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Abstract 

One  goal of the  Numerical  Turbulent  Transport  Project is to  model a tokamak  (fusion)  plasma  with lo8 - lo9 
particles, to  explain  anomalous  transport of particles and energy.  Since  this  ambitious  high  performance  com- 
puting and communications (HPCC) project involves multiple  institutions,  and  multidisciplinary  collaborations, 
several  project  members  have  been  investigating  object-oriented  techniques  for  designing  particle-in-cell (PIC) 
codes.  We  summarize  our  experiences  in  this area using  the  modern  constructs of the Fortran 90 programming 
language [2, 3, 4, 7, 81. 

1 Introduction 
Scientific application  programming involves unifying abstract physical  concepts and  numerical  models  with so- 
phisticated  programming  techniques that require  patience and  experience to  master.  Furthermore,  codes typically 
written by scientists are  constantly  changing  to model new physical effects. These  factors  can  contribute  to  long 
development  periods,  unexpected  errors,  and  software that is difficult to comprehend,  particularly when multiple 
developers  are involved. 

The  Fortran 90 programming  language [5] addresses the needs of modern scientific programming by providing 
features  that raise the level of abstraction,  without sacrificing performance.  Consider a 3D parallel  plasma  particle- 
in-cell program  in  Fortran 77 which  will typically define the particles,  charge  density  field,  force  field, and  routines 
to push  particles and deposit  charge. This is a segment of the  main  program where many  details  have been omitted. 

dimension  part(idimp, npmax), q(nx,  ny, nzpmx) 
dimension  fx(nx,  ny, nzpmx), fy(nx,  ny,  nzpmx), fz(nx,  ny,  nzpmx) 
data qme, d t  / -1 . , .2 /  
c a l l  push(part , fx , fy , fz ,npp,noff  ,qtme,dt,wke,nx,ny,idimp,npmax,nzpmx) 
ca l l  dpost(part,q,npp,noff,qme,nx,ny,idimp,npmax,nzpmx) 

Note that  the  arrays  must be dimensioned at compile-time. Also parameters  must  either be passed by reference, 
creating long argument  lists, or kept  in  common  and  exposed  to  inadvertent  modification.  Such  an  organization is 
complex to  maintain, especially as codes are modified  for  new experiments. 

Using the new features of Fortran 90, abstractions  can be introduced that clarify the  organization of the code. 
The  Fortran 90 version is more  readable while designed for modification and extension. 
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use  partition-module ; use plasma-module 
type   ( spec ies )  : :  e l ec t rons  
type   ( sca la r f  i e l d )  : : charge-densbty 
type   (vec tor f ie ld)  : :  e f ie ld  
type   ( s l abpa r t i t i on )  : :  edges 
real :: d t  = . 2  
ca l l   p lasma-par t ic le -push(   e lec t rons ,   e f ie ld ,   edges ,  d t  ) 
c a l l  plasma-deposit-charge(  electrons , charge-density, edges ) 

This  style of object-oriented  programming, where the basic data unit is an  “object”  that shields its  internal 
data from misuse by providing public routines  to  manipulate  it, allows such a code to  be designed and  written. 
Object-Oriented  programming clarifies software while increasing  safety and communication  among  developers, but 
its benefits are only useful for sufficiently large and complex programs. 

While Fortran 90 is not an object-oriented  language, the new features allow most of these  concepts to  be 
modeled directly. (Some concepts are more complex to emulate.)  In  the following, we will describe how object- 
oriented  concepts  can  be  modeled in Fortran 90, the application of these ideas to  plasma PIC programming  on 
supercomputers,  and  the  future of Fortran programming  (represented by Fortran 2000) that will contain explicit 
object-oriented  features. 

2 Modeling Object-Oriented Concepts in  Fortran 90 

Object-Oriented  programming (OOP) has received wide acceptance,  and  great  interest,  throughout  the compu- 
tational science community as an  attractive  approach  to  address  the needs of modern  simulation.  Proper use of 
OOP ensures that programs  can  be  written safely, since the  internal implementation  details of the  data objects 
are hidden. This allows the  internal  structure of objects  and  their  operations to  be modified (to improve efficiency 
perhaps),  but  the overall structure of the code using the objects  can  remain  unchanged.  In  other words, objects 
axe an encapsulation of data  and routines. 

These  objects represent  abstractions.  Another  important concept is the notion of inheritance, which allows new 
abstractions  to  be  created by preserving  features of existing  abstractions.  This allows objects  to gain new features 
through  some  form of code  reuse. Additionally, polymorphism allows routines  to  be applied to  a variety of objects 
that  share some  relationship,  but the specific action taken varies dynamically  based  on the object’s  type.  These 
ideas are mechanisms for writing  applications that more closely represent the problem at hand. As a result, a 
number of programming  languages  support  OOP concepts in some  manner. 

Fortran 90 is well-known for  introducing  array-syntax  operations  and  dynamic  memory  management. While 
useful, this  represents a  small  subset of the powerful new features available for scientific programming.  Fortran 90 
is backward  compatible  with  Fortran 77 and, since it is a subset of High Performance  Fortran  (HPF),  it provides 
a migration  path for data-parallel  programming.  Fortran 90 type-checks parameters  to  routines, SO passing the 
wrong  arguments to a function will generate a compile-time error.  Additionally, the  automatic  creation of implicit 
variables  can be suppressed  reducing  unexpected  results. 

However, more powerful features  include  derived-types, which allow user-defined types  to  be  created  from exist- 
ing  intrinsic  types and previously defined derived-types.  Many forms of dynamic  memory  management  operations 
are now available,  including  dynamic  arrays and  pointers.  These new Fortran 90 constructs  are  objects  that know 
information  such as  their size, whether  they have been allocated,  and if they refer to  valid data.  Fortran 90 modules 
allow routines to  be associated  with  types and  data defined within the module. These  modules  can be used in 
various ways, to bring new functionality to program  units.  Components of the module  can be  private  and/or public 
allowing interfaces to be  constructed that control the accessibility of module  components.  Additionally,  operator 
and  routine overloading are  supported  (name reuse), allowing the proper  routine to  be called automatically based 
on the number and  types o f  the  arguments.  Optional  arguments  are  supported, as well as generic  procedures that 
allow a single routine  name  to be used while the  action taken differs based on the  type of the  parameter. All  of 
these  features  can  be used to  support  an object-oriented  programming  methodology [2, 3, 61. 
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Table 1: 3D  Parallel  Plasma PIC Experiments  on Cornell’s IBM SP2  (32PEs,  8M  Particles). 

Language Compiler 

1173.31s 1316.20s K,4I KCC C++ 
537.95s 668.03s IBM xlf Fortran 77 
488.88s 622.60s IBM xlf90 Fortran 90 

P2SC Optimized P2SC Super Chips 

3 Application: Plasma PIC Programming on Supercomputers 
In the  introduction, we illustrated how Fortran 77 features could be modeled using Fortran 90 constructs.  In 
designing the PIC programs,  basic  constructs like particles  (individually and collectively), fields (scalar and vector, 
real and complex),  distribution  operations,  diagnostics,  and  partitioning schemes were created  as  abstractions using 
Fortran 90 modules. Fortran 90 objects  are defined by derived types  within  modules  where the public  routines 
that  operate on  these  objects  are visible whenever the object is “used”. (The  private  components of the module 
are only accessible within  module defined routines.) 

A portion of the species module, shown below, illustrates how data  and routines  can  be  encapsulated using 
object-oriented  concepts.  This  module defines the  particle collection, where the interface to  the particle Maxwellian 
distribution  routine  is included. 

module species-module 
use  distribution-module ; use  partition-module 
impl ic i t  none 
type   pa r t i c l e  

p r iva t e  
real : :  x ,  y ,  z ,  vx,  vy, vz ! pos i t ion  & ve loc i ty  components 

end t y p e   p a r t i c l e  
type  species  

r e a l  :: qm,  qbm, ek ! charge,  charge/mass,  kinetic  energy 
in teger  : :  nop, npp ! # of p a r t i c l e s ,  # of p a r t i c l e s  on PE 
type  (par t ic le) ,   d imension(:) ,   pointer  : : p ! pa r t i c l e   co l l ec t ion  (dynamic) 

end type  species  

subroutine spec ies -d is t r ibu t ion( th is ,  edges,   d is t f )  
type  (species) ,   in tent   (out)  : :  t h i s  
type  (s labpart i t ion)  , i n t en t   ( i n )  : : edges 
type  (dis t fcn)  , i n t en t   ( i n )  : : d i s t f  
! subroutine body 

contains 

end subrout ine  species-dis t r ibut ion 
! addi t iona l  member rout ines  

end  module species-module 

Some OOP  concepts, such as  inheritance,  had limited usefulness while run-time  polymorphism was used infre- 
quently.  Our  experience  has  shown that these  features, while sometimes appropriate for general  purpose  program- 
ming, do not seem to be as useful in scientific programming. Well-defined interfaces, that  support  manipulation of 
abstractions, were more important. More details  on the overall structure of the code  can be found in [7]. 

The wall-clock execution  times for the 3D parallel PIC code written in Fortran  90,  Fortran 77, and C++ are 
illustrated in Table 1. Although our experience  has  been that  Fortran 90 continually  outperforms C++ on complete 
programs,  generally by a factor  of two, others have performance  results that  indicate  that C++ can  sometimes 
outperform  Fortran 90 on  some  computational kernels [l]. (In  these  cases, “expression templates”  are  introduced 
as a compile-time optimization to speed up  complicated array  operations.) 

The most aggressive  compiler  options  produced the fastest  timings and  are represented in the  table.  The 
KAI C++ compiler with +K3 - 0 3  -abstract-pointer  spent over 2 hours in the compilation  process. The IBM 
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F90 compiler with - 0 3  -qlanglvl=90std  -qstrict  -qalias=noaryovrlp used 5 minutes for compilation.  (The KAI 
compiler is generally considered the most efficient C++ compiler when objects  are used. This compiler generated 
slightly  faster  executables than  the IBM C++ compiler.) Applying hardware  optimization  switches  (-qarch=pwr2 
-qtune=pwr2)  introduced  additional performance  improvements specific to  the  P2SC processors. 

We have found Fortran 90 very useful, and generally safer with higher performance than C++ and sometimes 
Fortran 77, for large  problems  on  supercomputers. Fortran 90 derived-type  objects  improved  cache  utilization, for 
large  problems, over Fortran 77. (The  C++  and  Fortran 90 objects  had  the same storage  organization.)  Fortran 90 
is less powerful than  C++, since it  has fewer features  and those available can  be  restricted to  enhance  performance, 
but  many of the advanced  features of C++ have not been required  in scientific computing.  Nevertheless,  advanced 
C++ features  may  be more appropriate for other  problem  domains [4, 71. 

4 Conclusions 
The use of object-oriented  concepts for Fortran 90 programming is very beneficial. The new features  add  clarity 
and safety to  Fortran  programming allowing computational  scientists to advance their  research, while preserving 
their investment  in  existing  codes. 

Our web site provides  many  additional  examples of how object-oriented  concepts can  be modeled  in Fortran 90 
[6].* Many  concepts, like enFaTsGiion of data  and routines  can  be  represented  directly.  Other  features,  such  as 
inheritance  and polymorphism,  must be emulated  with a combination of Fortran 90's  existing  features  and user- 
defined constructs.  (Procedures  for  doing  this  are  also included at the web site.)  Additionally, an evaluation of 
compilers is included to provide  users  with an  impartial comparison of products  from different vendors. 

The  Fortran 2000 standard has been defined to include explicit object-oriented  features  including single inher- 
itance, polymorphic  objects,  parameterized  derived-types,  constructors, and  destructors.  Other  features, such as 
interoperability  with C will simplify support for advanced  graphics  within Fortran 2000. 

Parallel  programming  with MPI  and  supercomputers is possible with Fortran 90. However, MPI does not 
explicitly support  Fortran 90 style  arrays, so structures such as  array subsections cannot  be  passed  to  MPI  routines. 
The  Fortran 90 programs were longer than  the Fortran 77 versions (but more readable),  and much shorter  than 
the  C++ programs  because  features useful for scientific programming are not  automatically  available  in  C++. 
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